
Scientific Visualization, 2023, volume 15, number 4, pages 24 - 40, DOI: 10.26583/sv.15.4.03 

RLaMs-Dehazing: Optimized Depth Map Improvement Single 

Colour Image Dehazing 
 

Sangita Roy1 

 
ECE Department, Narula Institute of Technology, Kolkata, India 

 
1 ORCID: 0000-0002-8898-0183, roysangita@gmail.com 

  
Abstract 
Visibility Degradation is a classical problem owing to the presence of Atmospheric Partic-

ulate Matter (APM). There are different image dehazing algorithms. Any one method cannot 
be relied upon as each haze condition is unique. An innovative algorithm has been proposed 
inverting the image formation atmospheric scattering model [2, 32]. The model has been im-
provised by one key factor. This is Regularized Lagrangian multiplier (RLaM) based Depth 
Map (DM) refinement. The algorithm has low time complexity which intrigues real-time effi-
cient applications. Different state-of-the-art visibility algorithms have been studied and their 
subjective and objective performance evaluations have been evaluated. Extensive investiga-
tion shows remarkable improvement with the proposed algorithm. This method is equally 
applicable to different atmospheric conditions. Time complexity experimented with execution 
time and Big (O) for real-time effectiveness. Extensive experiment results show the potential 
of the proposed algorithm independent of the influence of atmospheric conditions and cap-
turing devices adaptive to computer vision applications. Time complexity and quality output 
trade-off achieved with the removal of ringing artifacts efficiently.  
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1. Introduction 
Rain, fog, vog, mist, fume, smog, hail, snow, etc. are considered as the source of APM. Re-

searchers are fighting the challenge of the presence of APM which is due to unplanned civili-
zation and technological advancements. Satellite images show that Asia and Africa and very 
few parts of American countries are the most polluted atmosphere deteriorating yearly. APM 
are both natural and manmade. APM is a mixture of solid and liquid droplets in a variety of 
sizes, Coarse APM as PM10-PM2.5 (micrometre diameter), finer as PM2.5, and ultrafine be-
low PM0.1[1]. Computer vision (CV) encompasses object tracking, object recognition, surveil-
lance, image enhancement, etc. A clear image is a fundamental requirement in CV applica-
tions. APM degrades the visibility of the received image. distance, airlight, transmission, and 
scattering coefficient influence image formation at the viewer point (i.e. may be considered 
camera) [2]. classical enhancement techniques, like, histogram equalization, image adjust-
ment, and adaptive histogram equalization work well for the normal image enhancement 
process. These techniques fail in special cases of bad weather lowering the image visibility. 
Single image visibility restoration is the challenge of all other image visibility improvements 
as no ground truth or reference image could be found. Single image dehazing is one of the 
most sought-after single image visibility restoration techniques. Any outdoor clear image in-
herently possesses high contrast, airlight does not affect the richness of the image, pixel in-
tensity is well distributed, and pixel over-saturation and under-saturation do not exist [22]. 
Contrary to that of hazy images are of low contrast and airlight makes images white. Most of 
the pixel intensities are very high i.e., under-saturated and flocked together. Over saturation 
occurs in one of the channels of the degraded image due to the illuminant of a strong colour 
cast, the response of the sensor/camera differently for different colour channels resulting in 
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achromatic image artifacts. Visibility Improvement is under the category of an ill-Posed In-
verse Problem [1-16, 31-33]. The best image has to be evaluated from the attenuated received 
images. Inverting image formation optical model, a reconstructed image can be found as close 
to the original image depending on the applications. The paper is arranged as: section 2 con-
sists of a Literature survey. The main contribution of the work has been identified in section 
3. Proposed methods with mathematical modelling have been illustrated in Section 4. The re-
sult is described in section 5 with explains qualitative and quantitative analysis. Finally, sec-
tion VI is for the Conclusion. 

2. Background Theory and Associated Work 
In some research work, DCP (dark channel prior) has been used which is a statistical pri-

or on haze free images. This prior indicates that in a normal RGB image, 75% of pixels of any 
dark channel is zero where dark channel indicates the lowest intensities channel out of three 
RGB image channels. 90% pixels of that channel is below 25. However, the scenario drifts 
radically in case of degraded weather. That corresponds to the high intensity of the dark 
channel. It is due to atmospheric airlight which shifts the pixel's intensity to a very high value 
producing an almost white image. The method is efficient but takes a long time to reproduce. 
Therefore real time applications cannot be useful [4]. The work of R Tan is based on two ob-
servations, the contrast of image is compromised in the degraded image. Normal image has 
more contrast than that of hazy image. A degraded image has more airlight and it increases 
with distance. As a result distant part becomes smoother and invisible. The method is effi-
cient as required a single image, but not applicable for real time [5]. The algorithm proposed 
by J P Tarel is fast and its complexity is a linear function with the number of image pixels for 
both colour and gray image. The algorithm is tuned by only four parameters, atmospheric veil 
inference, image restoration, smoothing, and tone mapping [6]. Research work of R Fattal 
based on haze estimation, and scatter light estimation. From that information, haze free im-
age contrast has been recovered. It has been assumed that transmission and surface shading 
is locally uncorrelated. This simple statistical assumption reduces other complexity like sur-
face albedo. The challenge of this method is to solve the pixels where no transmission is avail-
able. An implicit graphical model made it possible to extrapolate the solution of those pix-
els[7]. It is not a patch based prior contrary to previous methods. It is non-local prior. D Ber-
man et. al. emphasised that degradation is not uniform. It is different for different pixels of 
the image and is controlled by the transmission coefficient. It has been proposed colours of 
haze free to be clustered and spread over the entire image. Whereas a hazy image forms a line 
of colours that was earlier clustered, called a haze line. It recovers the distance map. The algo-
rithm is linear, faster, and deterministic, no training is required [8]. The author is working on 
visibility improvements. The works were DCP based vision improvements where the speed of 
the original algorithm was improved with reduced complexity and sky masking [9]. In [10] 
authors proposed three algorithms and revised DCP by gamma correction, contrast control-
ler, sky masking and guided filtering. In [11, 12, and 13] authors emphasised on the objective 
evaluation of the DCP method and mathematical modeling of image formation. DCP is basi-
cally patch based or local prior. Patch size in [4] was 15x15, omega was 0.95. These two pa-
rameters play a significant role. This has been shown [14]. DCP with sky masking is a useful 
algorithm. But the value of optimum value is difficult to find out. It is evaluated manually. In 
[5] this difficulty has been recovered by using Cuckoo Search Algorithm. The resultant image 
using CSA removes the artifacts of sky reflection very well. Visibility Improvement is a classi-
cal Inverse problem. Haze is always associated with blurring. Here both have been treated 
and removed [3-16]. 

3. Main Contribution of the paper 
As discussed above single image colour dehazing is a challenge and complex in nature. In 

this work low complexity depth map non-linear noise removal model has been estimated. Im-



age degradation optical model with refined transmission via RLaMs depth map estimation 
produces the resulting reconstructed output. Apart from that haziness factor k has been eval-
uated automatically depending on the spread of intensity in the depth map [33]. 

3.1 Regularized Lagrange Multiplier (RLaM) and Point Spread 
Function( PSF) 

Blur is an integral part of any degraded image. It comes along with nonlinear noise. The 
degrading system prior model has to be reconstructed from blurred or degraded images. Lin-
ear filters like Wiener, Least square filter, and nonlinear filters like Lucy Richardson filter 
have also been studied. RLaMs have been applied to remove blur which has been compared 
to classical methods using parametric assessment of PSNR and time consumed [24, 25]. 
RLaMs are effective and important in computer graphics applications as it is non-iterative, 
fast, and bypass the problem of parameterizing system’s degree of freedom. Finally, it has 
computational complexity O(n).[28].These advantages of LaMs have been adapted in this re-
search work. The PSF is a quantity to determine the power of an optical system. Better resolu-
tion may be achieved by narrowing the PSF. It is the spread of a point source of light as it 
passes through a system. Ideally, a point source in space is defined by the delta function infi-
nite spectrum in special frequency kx, ky. PSF of an image forming optical system is resolved 
by the parameter of an optical system and the distance or depth of the object to be imaged 
[29]. Figure 3 shows PSF(Point Spread Function) with Gaussian kernel 3x3 and standard de-
viation 10, noise variance 0.1. Twelve different outdoor natural degraded images have been 
recovered with Regularized Lagrange Multiplier with the above PSF. It is often encountered 
in engineering and science applications the discretization of linear ill-conditioned problems. 
This leads to large ill-conditioned linear systems with right hand side corrupted by noise [27]. 
The solution of this kind of linear system needs the solution of a minimizing problem which is 
dependent on the estimation of the variance of the noise. This approach is well-known as reg-
ularization. Lagrangian is a technique to solve this type of Noise Constrained Regularization 
problem. 

 

 
Fig. 1 Point Spread Function used with Gaussian kernel 3x3 and standard deviation 10,  

noise variance 0.1. 
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3.2 Image Formation Process 

Initially image restoration method is considered under the category of linear spatially in-
variant restored filters. Blurring function is considered as point spread function (PSF) or con-
volution kernel h (n1, h2). Statistical properties (mean, correlation) of the original image are 
assumed to be non-changeable spatially. Under these conditions image formation mathemat-
ical model is formulated. Here f (n1, n2) is the ideal spatially discrete image with no blur or 
noise. The received image is displayed as 

𝑔(𝑛1, 𝑛2) = ℎ(𝑛1, 𝑛2) ∗ 𝑓(𝑛1, 𝑛2) = 

= ∑ ∑ ℎ(𝑘1

𝑀−1

𝐾2=0

𝑁−1

𝑘1=0

, 𝑘2) 𝑓(𝑛1 − 𝑘1, 𝑛2 − 𝑘2) 
3.2.1 

 The above equation can be rewritten in matrix form.𝐹 ∈ ℝ𝑟×𝑛 is the matrix form of origi-
nal image.𝐺 ∈ ℝ𝑟×𝑚 is the corresponding degraded image. fi,j is the pixel elements i=1…….r 
and j=1…..n. 𝐻 ∈ ℝ𝑚×𝑛 is the degradation matrix. Each row of matrix are related by  

𝑔 = 𝐻𝑓, 𝑔 ∈ ℝ𝑚, 𝑓 ∈ ℝ𝑛, 𝐻 ∈ ℝ𝑚×𝑛 3.2.2 

Where 𝑓 = 𝑓𝑖
𝑇 𝑎𝑛𝑑 𝑓𝑖 represents ith row of the original image F. Similarly 𝑔 = 𝑔𝑖

𝑇 𝑎𝑛𝑑 𝑔𝑖 
represents ith row of the degraded image G. The process is repeated for each row of the ma-
trix and develops an unknown system of m simultaneous equations with n=m+l-1. It is now 
easy to evaluate PSF which is assumed to be spatially invariant, and the degradation matrix H 
with zero boundary conditions. It is assumed that the length of blur be l in pixels which is also 
known as degradation index and an integer. Degradation index ‘l’ is very difficult to find and 
has to be approximated from the degraded image. Degradation index ‘l’ can be recovered by 
two methods i) one dimensional cepstral method, ii) two dimensional cepstral method. It is 
now important to find ith row of the blurred image from the ith row of the original image using 
the eq 3.2.2. 
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 3.2.3 

Where ℎ𝑖 =
1

𝑙
 𝑓𝑜𝑟 𝑖 = 1, …… . . 𝑙, ℎ𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐻 𝑚𝑎𝑡𝑟𝑖𝑥. The main objective is to re-

trieve original image from degraded image G and priori knowledge of degraded phenomena 
matrix H. The matrix ∈ ℂ𝑟×𝑚, blurred image, can be written mathematically  

𝑔𝑖,𝑗 =
1

𝑙
∑ 𝑓𝑖,𝑗+𝑘 

𝑙−1

𝑘=0

, 𝑖 = 1… 𝑟, 𝑗 = 1…𝑚 3.2.4 

Now eq 3.2.4 can be rewritten as 
𝐺 = (𝐻𝐹𝑇)𝑇 = 𝐹𝐻𝑇 , 𝐺 ∈ ℝ𝑟×𝑚, 𝐻 ∈ ℝ𝑚×𝑛, 𝐹 ∈  ℝ𝑟×𝑛 3.2.5 

It is clear that there are infinite of exact solutions for f satisfying the eq 3.2.2 and 3.2.5. 
Out of them sharpest restored matrix is essential. The vertical blur matrix is given by 

𝐺 = 𝐻𝐹, 𝐺 ∈ ℝ𝑚×𝑛, 𝐻 ∈ ℝ𝑚×𝑟 , 𝐹 ∈ ℝ𝑟×𝑛, 𝑟 = 𝑚 + 𝑙 − 1 3.2.6 
Now this is assumed that blurring of rows is independent of blurring of columns in im-

age. Consequently there exists two matrices Hc and Hr. In such a scenario these can be ex-
pressed as 

𝐺 = 𝐻𝑐𝐹𝑟
𝑇 , 𝐺 ∈ ℝ𝑚1×𝑚2, 𝐻𝑐 ∈ ℝ𝑚1×𝑟 , 𝐹 ∈ ℝ𝑟×𝑛, 𝐻𝑟 ∈ ℝ𝑚2×𝑛 3.2.7 

Where n=m2+l1-1, r=m1+l2-1, l1 is linear horizontal blur in pixel, and l2 is linear vertical 
blur in pixel.  



3.3 Image Recovery by Regularized Lagrange Multiplier 

In this section an excellent method has been reviewed known as Lagrange Multiplier 
(LM). This is a linear blur model. The main purpose of the LM is to remove linear blur and 
recover original image as optimum as possible [fumi]. It is assumed that blur length is integer 
number of pixels and resolution of the recovered image is very high. From eq 3.2.2 g=Hf, 
where f᷉ is the first ‘m’ components of ‘f’ which has minimum distance from measured data, 

‖𝒇 ̃ − 𝒈‖ → 𝒎𝒊𝒏  𝟑. 𝟐. 𝟏. Now it is assumed that 𝒇 ̃=Pf. P is a mxn matrix to project f using 

the backing of g. 
𝑃 = [𝐼𝑚| 𝑂] 3.3.1 

Where Im denotes identity matrix of size mxm and O signifies mx(l-1) null matrix. Eq 
3.2.1, original optimization problem, is redefined as 

min
𝑓

‖𝑃𝑓 − 𝑔‖ 3.3.2 

While subject to constrain ‖𝐻𝑓 − 𝑔‖2 = 0 3.2.4. Therefore eq 3.2.3, and 3.2.4 are together 
a constrain optimization problem. Using LMs, an alternate optimization problem without 
constrain can be modelled. 

𝑉(𝑓) = 𝜆‖𝐻𝑓 − 𝑔‖2 + ‖𝑃𝑓 − 𝑔‖2  → min   3.3.3 
𝜆 is known as Lagrange multiplier. Equation 3.2.5 is strictly convex and low semi contin-

uous with respect to weak-star bounded space topology [24-26]. Now partial derivative of V 
with respect to unknown f for very high λ: 

𝛿

𝛿𝑓
𝑉(𝑓) = 2𝜆𝐻𝑇(𝐻𝑓 − 𝑔) − 2𝑃𝑇(𝑃𝑓 − 𝑔) = 0 3.3.4 

𝑓 = (𝜆𝐻𝐻𝑇 + 𝑃𝑇𝑃)−1(𝜆𝐻 + 𝑃)𝑇𝑔 3.3.5 
The solution of eq 3.2.7 in the matrix form is: 

𝐹̌ = 𝐺(𝜆𝐻 + 𝑃)((𝜆𝐻𝐻𝑇 + 𝑃𝑇𝑃)−1)𝑇 3.3.6 
The eq 3.2.7 interprets the solution of recovered image in the horizontal blurring condi-

tion. In case of vertical blurring scenario equation 3.2.6 and 3.2.7 will be helpful. 

𝐹̌ = (𝜆𝐻𝑇𝐻 + 𝑃𝑇𝑃)−1(𝜆𝐻 + 𝑃)𝑇𝐺 3.3.7 
Now for a two dimensional separable blurring processes the recovered image is: 

𝐹̌ = (𝜆𝐻𝑇𝐻 + 𝑃𝑇𝑃)−1(𝜆𝐻 + 𝑃)𝑇𝐺 (𝜆𝐻 + 𝑃)((𝜆𝐻𝐻𝑇 + 𝑃𝑇𝑃)−1)𝑇 3.3.8 

3.4 Time Complexity 
There are numerous algorithms to solve a specific problem. Out of several algorithms, 

one of them has to be chosen. There are also several criteria to fit one algorithm for a prob-
lem. Efficiency criteria will meet and fit for algorithmic fitness selection in computational 
computing. Efficiency encompasses three criteria: i) time efficiency, ii) space efficiency, and 
iii) Development efficiency [30]. Time complexity in terms of execution time and big oh nota-
tion has been experimented and one way of classifying and comparing algorithms.  

4. Single Colour Image Restoration 
Using the above described techniques a novel algorithm has been effectively designed to 

remove atmospheric turbulence as well as system degradation on single colour image. Total 
algorithm with their detail mathematical modelling is given below in the corresponding sub-
sections. 

4.1 Proposed Methodology 
In this paper, a novel algorithm based on inverting H Koschmieder and E J McCartney 

image formation optical model [2,32] has been presented. Transmission is refined through 
Lagrange Multiplier-based depth map estimation and followed by YCbCr correction as 
shown in Fig. 2 [24-29]. They are elaborated below. 

 



 
Figure 2. Block Diagram of the RLaMs (Proposed Model). 

 

 Algorithm 1: RLaMs  

 Input Hazy Image:I Computational 
Complexity 

Step I Average of minimum of three channels as Imin O(n) 

Step II Average of maximum value of three channels as Imax O(n) 

Step III Haziness factor, k =Imin / Imax Eq. (4.4.1) O(n) 

Step IV Airlight Estimation 
 

O(n) 

Step V Estimation of minimum intensity channel O(n) 

Step VI Refinement / noise removal of minimum intensity 
channel by Regularized Lagrange Multiplier Tech-
nique (used as Depth Estimation) [28] 
 

O(n ) 

Step VII Transmission Estimation from step VII Eq. (4.3.4) 
 

O(n) 

Step VIII Recovery of Dehazed image with image degradation 
optical model [2, 38, 39]. Eq.(4.6.1) 
 

O(n) 

Step IX YCbCr correction 
 

O(n) 

Step X Evaluation of contrast,k, β and dmax of the Dehazed 
Image 

O(n) 

 
The image formation model, also known as airlight scattering model, was proposed by H 

Koschmieder, and E J McCartney [2, 32] and represented as an ill-posed problem in equation 
(4.1.1).  

I(x): the hazy image at a point x,  
J(x): the haze-free image, 
t(x): the transmission map, 
A: atmospheric light, 
β: atmospheric extinction coefficient, 
d: distance between the original image and hazy image or depth of scene.  
Here I, J, and A are 3-D RGB image arrays. Six variables are shown above. Only I, the 

hazy image, is known. 
J has to be developed from I, t, A, β. Estimation of A, t and β are responsible for good 

quality dehazed image. 

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)) 4.1.1. 

𝑡 = 𝑒−𝛽𝑑 4.1.2 

4.2 LMs-based Improved Depth Information estimation 
Noise is an integral part of an imaging system. The transmission map, a 2D image array, 

is severely captured by noise. The dehazed image is restored by minimizing TM. TM is ob-
tained by inverting DM with proper selection of haziness factor [33]. Transmission map is 
solely associated with depth information and inaccurate estimation leads to the halo effect 
leading to a high computational cost problem [3-16,33] and is associated as an understanding 



of geometric relationships in a scene. Single image DM estimation is far harder than multiple 
images and to simplify patch-based dark channel [4], DM is estimated as the minimum of 
three channels. Random noise on the minimum channel is eliminated by RLaMs mentioned 
earlier in section 3.1.  

𝐼𝑐𝑚𝑖𝑛(𝑥) =  ( min
c∈{r,g,b}

(𝐼𝑐(𝑥)) 4.2.1 

Ic : indicate individual channels of RGB image, 
Icmin: minimum of three channels Ic (noisy), 
IcminLMs : RLaMs Icmin (noisefree) 
Noisy Icmin is made noiseless through Lagrange Multiplier and is considered as refined 

normalized DM. 
𝐼𝑐𝑚𝑖𝑛𝐿𝑀𝑠(𝑥) = 𝑅𝐿𝑀𝑠(𝐼𝑐𝑚𝑖𝑛(𝑥)) 4.2.2 

Complimenting equation (4.2.2) will produce low complexity edge preserved smooth 
maximum intensity. This maximum intensity channel will be treated as the TM t(x) [4, 17-
29]. Whereas this proposed concept is computationally simple and easy to implement.  

4.3 Transmission estimation using refined Depth map 

Intensity from any far point pixel in the minimum intensity channel may be zero and to-
tally faded away with distance and represented as atmospheric light A [0 1] as in equation 
(4.1.1). This can be rewritten below. 

𝐼𝑐𝑚𝑖𝑛(𝑥) = 𝐴(1 − 𝑡(𝑥)) 4.3.1 
In marginal case, equation 4.3.1 can be refined with atmospheric light A as one for the far 

end point as below. 
𝐼𝑐𝑚𝑖𝑛(𝑥) = 1 − 𝑡(𝑥) 4.3.2 

Another improvement needed as Icmin is noisy and after RLaMs based refinement on 
depth map estimation according to equation (4.2.2) transmission equation will be rewritten 
as F 

𝐼𝑐𝑚𝑖𝑛𝑙𝑚𝑠 = 𝐿𝑀𝑆(𝐼𝑐𝑚𝑖𝑛) 4.3.3 
𝑡𝑛𝑒𝑤(𝑥) = 1 − 𝐼𝑐𝑚𝑖𝑛𝐿𝑀𝑠  4.3.4 

Now after getting refined transmission map for individual image, tnew(x) will not be the 
same for each image, as individual scenario is different. Therefore additional factor, haziness 
factor k, is required to be introduced. 

𝑡𝑛𝑒𝑤(𝑥) = 1 − 𝑘𝐼𝑐𝑚𝑖𝑛𝐿𝑀𝑠  4.3.5 
K is a proportionality constant for aerial perspective respectively. Zero indicates clear vis-

ibility like clear day scene, whereas one indicates absolutely no visibility like thick fog [4, 7, 
33].  

4.4 Automated Haziness Factor Estimation 

𝑘 =
𝐼𝑐𝑚𝑖𝑛

𝐼𝑐𝑚𝑎𝑥
 4.4.1 4.4.1 

It has already been stated that k, haziness factor, indicates the amount of haze present in 
the image of interest. So far this is calculated manually by visual inspection of the amount of 
haze. But for real time applications this cannot be implemented. The author has already 
worked with this [31, 33]. Here it is considered that haziness factor k is the ratio of the aver-
age of the minimum intensity channel to the average of the maximum intensity channel. This 
concept works well for real time adaptive visibility improvement. 

4.5 Atmospheric Light Estimation 
Image formation optical model indicates that transmission decays exponentially with dis-

tance in Eq. (4.1.1), (4.1.2). In the end, the far end or background becomes whitish and tech-
nically as equal to A, atmospheric light [2, 4, 32, 33] and distant pixels are maximum bright 
due to haze. it has been proposed atmospheric light to be maximum bright pixels in an image. 



For more robust estimation, atmospheric light A has been considered to be the top 0.1% 
bright pixels of each channel.  

An example has been explained in Fig. 5. It shows the degraded image, its depth map and 
transmission map, recovered image, its depth map, and transmission map by the proposed 
RLaMs-Dehazing algorithm. It is evident not only from the recovered image but also from the 
recovered depth map and transmission map that the proposed algorithm works well and 
serves its purpose of cleaning the image. 

4.6 Scene radiance recovery using scattering image formation op-
tical model 

The main objective of the work is to retrieve the original hazefree or scene radiance im-
age. Therefore from equation 4.1.1 scene radiance can be recovered. This is shown below. 

𝐽(𝑥) =
𝐼(𝑥)

𝑡𝑛𝑒𝑤(𝑥)
− 

𝐴(1 − 𝑡(𝑥))

𝑡𝑛𝑒𝑤(𝑥)
 4.6.1 

4.7 YCbCr correction of the scene radiance image 
Y is luma or intensity or achromatic colour channel component of any colour image. Cb 

and Cr are blue difference and red difference respectively. Luminance channel Y is independ-
ent of colour information, that is why YCbCr format performs better.By controlling y channel 
intensity keeping Cb and Cr channels unaffected radiance image brightness may be enhanced, 
so that gloomy radiance image may be look brighter. This is shown by an example in Fig. 3. 
Radiance dehazed image visibility may be enhanced by this YCbCr correction. 

   

Fig. 3. Left: Hazy input, Middle: Scene Radiance, Right: YCbCr correction 

5. Experimental Result 
In this section, the performance of the RLaMs dehazing technique is examined from vari-

ous aspects. At first, ten sample hazy images from the O-Haze dataset were examined with 
the RLaMs technique. GT, DM, refined DM, TM, refined TM, and RLaMs output were tested 
qualitatively and quantitatively. 

5.1 Performance of the RLaMs  
Haze is not uniform and changes its density in each situation. The popularity of any 

dehazing algorithm depends on its visibility improvement qualitatively and quantitatively [4-
16, 30-35]. Ten hazy images from the O-Haze dataset were selected randomly to investigate 
the effectiveness of the RLaMs. The results in Fig 4 show those randomly picked images along 
with their DM, TM, refined DM, refined TM, and dehazed outputs. The figure reveals the es-
sential details along with compatible DM, and TM texture for human perception cues. Arti-
factfree, balanced coloured, and clear outputs are obtained. The sky and clouds look natural. 
The different depths and haze of those images are well rectified. 

 



 
Fig. 4. Performance of the proposed RLaMs dehazing method, Left:-Right: Dense Input  
hazy Image, GT, DM, Refined DM, TM, Refined TM, RLaMs. 10 images O-Haze dataset 

[34]. 

5.2 Qualitative /subjective evaluation 

To validate the proposed algorithm, two types of image datasets were selected, real world 
and synthetic.  

a) Relative Study on Real world images, Ref [36] 



 

 
Fig. 5. Subjective performance of the state-of-the-art techniques and RLaMs using Real world 

images [34]. 
 
To verify the power of the RLaMs, eight state-of-the-art techniques ( DEFADE [37], NLD 

[38], IDE [39], MSCNN [40], ProxNet [41], EPDN [42], MSBDN [43], and IDRLP [35]) were 
experimented with the RLaMs. Images from the real-world varied haze thickness dataset in 
ref [36] are picked here. The subjective results are shown in Fig. 5. Fig. 5(b-i) generates clear 
output applicable to computer vision. Fig. 5(j) produces exceptionally clear and detailed tex-
tures in comparison to Fig. 5(b-i). Fig. 6(ZP1-ZP9) shows artifacts and shortcomings in [37-
43, 35] failing to handle haze, darkness, sky region, and colour over saturation. In Fig. 5(j), 
most of the shortcomings in Fig. 5 (a-i) are circumvented. 

b) Relative Study on Synthetic images with Haze-free GT as Refs [44, 34, 
45] 

Single image dehazing is the most difficult of all image restoration problems. Haze-free 
GT is an important criterion to validate any image restoration algorithm. GT haze-free images 
from References SOTs, I-Haze, and O-Haze datasets [44, 34, 45] have been used in Fig. 6 for 
comparable analysis of RLaMs with eight state-of-the-art techniques ( DEFADE, NLD, IDE, 
MSCNN, ProxNet, EPDN, MSBDN, and IDRLP) as [37-43, 35] respectively. Six images, two 
from each dataset, have been selected sporadically in Fig. 6. As in Fig. 6, RLaMs generate 
clear textured outputs befitting for CV applications. In analytical study, comparable subjec-
tive results were observed as in Fig. 5. High resemblance is obtained between Fig. 6(b) as GT 
and 6(k) as RLaMs. 

 



 
Fig. 6. Qualitative comparison between the proposed RLaMs and state-of-the-art techniques 

on six synthesis images. 

5.3 Objective Evaluation 

The quantitative assessment using PSNR and SSIM of the proposed model is summarized 
in Table I. Progressive results with the RLaMs showed its effectiveness in different kinds of 
haze removal. In six images of three different data sets in Fig. 6, the RLaMs performs the best 
of eight state-of-the-art methods with the average PSNR/SSIM values of the six images. 
Comparable clear results with RLaMs and GT are found. The ranking of the nine techniques 
is also shown in Table I along with their ranking. The ranking clarifies the effectiveness of the 
RLaMs-Dehazing technique(Ranking: 2,1,4,1,1,1,3,1,1,1,1, and 1). It is evident that the pro-
posed technique is fit quantitatively. Table II shows the ranking list. The RLaMs_Dehazing 
tops the list with a considerable margin. 
TABLE I 
PSNR AND SSIM Analysis of DEFADE, NLD, IDE, MSCNN, ProxNet, EPDN, MSBDN, 
IDRLP and RLaMs_Dehazing in Fig. 6. 

 



TABLE II 

PSNR/SSIM DEFADE NLD. IDE MSCNN. ProxNet EPDN. MSBDN IDRLP RLaMs. 

Ranking 31/35 49/37 38/41 30/ 36 36/32 42/44 19/23 13/14 12/06 

 
In Table III, performance analysis was conducted on SOTs, I-Haze, and O-Haze Datasets 

in Fig. 6. The average PSNR/ SSIM of those images is listed in groups in comparison with the 
eight above-mentioned benchmark algorithms and the RLaMs_Dehazed method along with 
their ranking. In Table III, the ranking of the RLaMs again shows its superiority over the oth-
er eight methods. 

 
TABLE III 
Performance as Average PSNR/ SSIM of DEFADE, NLD, IDE, MSCNN, ProxNet, EPDN, 
MSBDN, IDRLP and RLaMs_Dehazing with SOTS. I-Haze, and O-Haze Datasets:  

 

5.4 Computational Complexity 

Apart from subjective and objective evaluation, computational complexity plays an im-
portant role w.r.t any algorithmic performance in computer vision applications [23]. As 
shown in Algorithm 1, ten steps have O(n) complexity each. Thus, the overall complexity of 
Algorithm 1 is O(n). This indicates that the algorithm is a linear relationship with the size of 
the image (MXN). The time complexity of the eight state-of-the-art models and RLaMs tested 
with the R1, R2, R3, and R4 in Fig. 5 is summerized in Table IV. The results of the different 
resolutions of those images are listed in Table IV. The RLaMs-Dehazing proves its fastness in 
all types of images defeating the other contestants. 

5.5 Effect of Lagrange Multiplier 
Five images from O-Haze, I-Haze, and SOTs (11,21,11,21,1410.11) were randomly chosen 

with its GT, Hazy and RLaMs-Dehazing in Fig. 7. In Fig. 8, Cropped version of Fig. 7 shows 
the effectiveness of RLaMs with seven Lagrange Multiplier values in Table V. No artifacts was 
found. Moreover, it also verified the range of RLaMs [0.312,1.0953] for effective results. 

 

 

 

 
Fig. 7. First Row: Hazy Images(O_Haze(11,21), I_haze(11,21), SOTs); Second Row: GT; Third 

Row: RLaMs Dehaze Images 



TABLE IV 
Processing Time (seconds) of DEFADE, NLD, IDE, MSCNN, ProxNet, EPDN, MSBDN, and 
IDRLP and RLaMs_Dehazing with R1, R2, R3, and R4 in Fig. 6  

 
 

 
Fig. 8. Crop version of Fig. 8. with seven Lagrange Multiplier values; O-Haze(11,21), I-

Haze(11,21, SOTs (1410.11) 
 



TABLE V  
Lagrange Multiplier used in the above five images with seven Lagrange Multiplier values 
Lagrange 
Multiplier 

1.0953 0.3916 0.1563 0.1322 0.1037 0.0698 0.0312 

6. Conclusion 
Particles suspended in the air cause hindrance in the path of light travel. This effect pro-

duces serious artifacts and degradation in the image formation process in the digital image 
reconstruction system with poor or no visibility. To improve visibility in the digital image, a 
low complexity, fast, robust visibility improvement is presented. The Lagrange-based regular-
ized method is incorporated to refine TM through DM which improves transmission followed 
by inverting image formation optical model; finally, YCbCr correction enhances the results. In 
this paper, a novel regularized Lagrange Multiplier-based image visibility improvement tech-
nique RLaMs-Dehaze is presented. TM is purified through clean DM by the RLaMs optimiza-
tion technique. These RLaMs are powerful, robust and low complexity in time; especially lin-
ear in time with the size of the image under investigation. Experiments on a diverse set of re-
al-world images, and synthetic haze datasets demonstrate the preeminence of RLaMs-Dehaze 
over benchmark methods. Eight benchmark methods were selected for this experiment and 
excellent results were achieved for the superiority of the RLaMs-Dehazing qualitatively and 
quantitatively. 

Drawback 
RLaMs method produces more visibility than existing procedures. More modification 

possibilities are there to improve the algorithms depending on transmission maps TM and 
atmospheric light estimations (A). The weather condition of each image is unique. Therefore 
no one method can be claimed to optimally solve the problem equally.  

 
Conflict of interest: No conflict of interest. 
Highlight of the RLaMs Dehazing: RLaMs DM refinement, followed by TM correc-

tion. Inverting optical image formation model. YcbCr correction. 
Acronym: DM: Depth Map; TM: Transmission Map; GT: Ground Truth; CV: Computer 

Vision 
Resource:  
a) Software: Matlab2014a is used as software for experiments. 
b) Hardware: Intel core i3, 3110M CPU @ 2.40 GHz, 4.0 GB RAM, Intel HD Graphics 

4000, 6 years old has been used for the research.  
c) Dataset: SOTS. I-Haze, and O-Haze [44, 34, 45] 
Potential Application: This algorithm can be used in surveillance, Military, underwa-

ter, outdoor image post-processing, and onboard moving vehicles to enhance visibility and 
clear vision.  
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